Vlpw: the Very Long Packet Window Architecture for High Throughput Network-on-chip Router Designs
نویسندگان
چکیده
VLPW: The Very Long Packet Window Architecture for High Throughput Network-On-Chip Router Designs. (August 2011) Haiyin Gu, B.En., Zhejiang University Co-Chairs of Advisory Committee, Dr. Paul Gratz Dr. Eun Jung Kim ChipMulti-processor (CMP) architectures have become mainstream for designing processors. With a large number of cores, Network-On-Chip (NOC) provides a scalable communication method for CMPs. NOC must be carefully designed to provide low latencies and high throughput in the resource-constrained environment. To improve the network throughput, we propose the Very Long Packet Window (VLPW) architecture for the NOC router design that tries to close the throughput gap between state-of-the-art on-chip routers and the ideal interconnect fabric. To improve throughput, VLPW optimizes Switch Allocation (SA) efficiency. Existing SA normally applies Round-Robin scheduling to arbitrate among the packets targeting the same output port. However, this simple approach suffers from low arbitration efficiency and incurs low network throughput. Instead of relying solely on simple switch scheduling, the VLPW router design globally schedules all the input packets, resolves the output conflicts and achieves high throughput. With the VLPW architecture, we propose two scheduling schemes: Global Fairness and Global Diversity. Our simulation results show that the VLPW router achieves more than 20% throughput improvement without negative effects on zero-load latency.
منابع مشابه
Design of a Low-Latency Router Based on Virtual Output Queuing and Bypass Channels for Wireless Network-on-Chip
Wireless network-on-chip (WiNoC) is considered as a novel approach for designing future multi-core systems. In WiNoCs, wireless routers (WRs) utilize high-bandwidth wireless links to reduce the transmission delay between the long distance nodes. When the network traffic loads increase, a large number of packets will be sent into the wired and wireless links and can...
متن کاملDesign of a novel congestion-aware communication mechanism for wireless NoC architecture in multicore systems
Hybrid Wireless Network-on-Chip (WNoC) architecture is emerged as a scalable communication structure to mitigate the deficits of traditional NOC architecture for the future Multi-core systems. The hybrid WNoC architecture provides energy efficient, high data rate and flexible communications for NoC architectures. In these architectures, each wireless router is shared by a set of processing core...
متن کاملApplication Mapping onto Network-on-Chip using Bypass Channel
Increasing the number of cores integrated on a chip and the problems of system on chips caused to emerge networks on chips. NoCs have features such as scalability and high performance. NoCs architecture provides communication infrastructure and in this way, the blocks were produced that their communication with each other made NoC. Due to increasing number of cores, the placement of the cores i...
متن کاملA Literature Review of On-Chip Network Design with Dynamic Reconfiguration
— The architecture for on chip network design using dynamic reconfiguration is a solution to Communication Interfaces, Chip cost ,Quality of Service, guarantee flexibility of the network. The proposed architecture dynamically configure itself with respect to Hardware Modules such as routers, Packet based Switch and data Packet size by changing the communication conditions and its requirements a...
متن کاملOn-Chip Network Designs for Many-Core Computational Platforms
Processor designers have been utilizing more processing elements (PEs) on a single chip to make efficient use of technology scaling and also to speed up system performance through increased parallelism. Networks on-chip (NoCs) have been shown to be promising for scalable interconnection of large numbers of PEs in comparison to structures such as point-to-point interconnects or global buses. Thi...
متن کامل